
BUOYANCY SIMULATOR
A-LEVEL COMPUTER SCIENCE PROJECT BY THEO STEWART GRIFFITHS 13H

CANDIDATE NUMBER: XXXX
CENTRE NUMBER: XXXXX

CONTENTS
● ANALYSIS 2

○ STAKEHOLDERS 2
○ BUOYANCY 3
○ WATER SHADER 4
○ SAILING 5
○ BOIDS 6
○ FOCUS GROUP 7
○ PROTOTYPE OVERVIEW 7
○ REQUIREMENTS 8

● DESIGN: PROTOTYPE 1 9
● DEVELOPMENT LOG: PROTOTYPE 1 10

○ ABSTRACTION/PSEUDOCODE 10
○ TESTING 15
○ EVALUATION 16

● DESIGN: PROTOTYPE 2 20
● DEVELOPMENT LOG: PROTOTYPE 2 21

○ ABSTRACTION/PSEUDOCODE 21
○ TESTING 27
○ EVALUATION 28

● DESIGN: PROTOTYPE 3 36
● DEVELOPMENT LOG: PROTOTYPE 3 36

○ ABSTRACTION/PSEUDOCODE 36
○ END USER TESTING 43
○ POLISHING 43
○ EVALUATION 44

● EVALUATION 45
○ GALLERY 45
○ SUCCESS CRITERIA 48
○ FUTURE FEATURES 50

○ CONCLUSION 51

● FINAL CODE 52
○ UML DIAGRAM 65
○ BIBLIOGRAPHY 65

Theo Stewart-Griffiths // 13H 1

ANALYSIS
My project is a water-based physics simulation in which the user will be able to
control a boat on an ocean surface. This concept is amenable to a computational
solution because while physics simulations appear complex, they are a result of
objects following simple rules. A computer is able to calculate the outcome of
these simple rules mathematically on each object to produce the complete result.
In this instance, the upthrust and drag can be calculated at every point on the
boat.

Water simulations are very resource-intensive; I aim to produce a
simulation which balances both simplicity and accuracy. I have opted to instead
focus on the buoyancy aspect rather than the fluid dynamics as that requires
mathematics out of the scope of this project and performance found on very few
computers.

STAKEHOLDERS
BOAT ENGINEERS
Engineers can import test models of boats or other vehicles before they are
manufactured to simulate how they would react in different conditions.

● The simulation should work for various different objects as the simulation is
vertex-based and real time

● Can be run on any computer which meets the requirements, which includes most
modern computers

● The simulation will likely not be able to handle meshes with a large number of
vertices

● The accuracy of the simulation is limited due to approximations in Unity and
within the used algorithms

PHYSICISTS
Physicists could investigate buoyant behaviour and model how fluids interact
with objects immersed in them

● Parametric behaviour means that the initial conditions can be changed to model
different scenarios

● Physicists may be more interested in a fluid dynamic simulation rather than a
buoyancy simulation

AVERAGE USER
The average user would likely not have much use with this simulation however in
the future the features could be used as the foundational mechanics of a game,
however creating a game is out of the intended scope of this project.

Theo Stewart-Griffiths // 13H 2

BUOYANCY

Archimedes’ Principle states that upthrust is equal to the product of the fluid’s
density, the strength of gravity and the volume of fluid displaced.

Upthrust is a force that acts on objects in a fluid, caused by the fluid beneath
the object resisting compression. In the case of a floating object, the upthrust
must be greater than the weight force, which allows them to float.

The total volume of the ship that is submerged must therefore be
calculated. There are two ways to calculate this: the volumetric version, which
approximates the area using cubes or spheres. This trivialises the rotational
forces and therefore does not produce an accurate result. The surfacic version,
which measures the displacement per vertex, is the method that makes the most
sense in this context.

Volumetric method (left) and surfacic method (right)

SURFACIC METHOD
This algorithm has a time complexity of O(n²) and a space complexity of O(n).
Transferring data from the GPU to CPU can cause a bottleneck and impact
performance and Unity’s physics engine has many limitations, but these should not
impact the accuracy to a significant level.

● For each face on a floating object:
○ Calculate the distance, d, each vertex is underwater by subtracting

the wave height from the vertex height.
○ For each vertex underwater, apply the force to the midpoint of the

underwater vertices. The force’s magnitude is equal to the amount of
the triangle underwater - this can be approximated

○ Calculate the moment by applying the contact force to each vertex.
○ Apply drag forces.

EXISTING SOLUTIONS
https://www.gamedeveloper.com/programming/water-interaction-model-for-boats-in-vid
eo-games
The solution presented here is very complex, however it does produce an accurate
result. The main problem is that it is completely CPU-bound, which means that the
performance will not be great as the calculations are so complex.

Theo Stewart-Griffiths // 13H 3

https://www.gamedeveloper.com/programming/water-interaction-model-for-boats-in-video-games
https://www.gamedeveloper.com/programming/water-interaction-model-for-boats-in-video-games

WATER SHADER

These functions provide the position of a vertex in a Gerstner wave at time t at
position (a, b), with steepness k and speed c.

Fluids in real life follow complex laws. Doing these graphical calculations with a
shader will allow me to offload work from the CPU. The GPU is optimised to perform
calculations on many vertices at once.

GERSTNER WAVES
Gerstner waves are a type of trochoidal wave. They are often used to simulate the
surface of fluids as they oscillate in both the x- and y-axis, like real fluids
do. The direction and steepness of the main Gerstner wave will come from the
direction and magnitude of the wind. The waves will be perpendicular to the wind
and become steeper if the wind increases. To simulate turbulence, I may add extra,
smaller Gerstner waves with different parameters.

The limitations of this model include a lack of inclusion of vorticity -
the water is assumed to be uniformly moving in the same direction at a constant
rate proportional to the speed of the wind. Additionally, the shape and speed of
waves is determined by the depth of the water at a certain point, which is not
accounted for in this model. These rules are outside of the scope of my project
and I do not intend to include them as they do not have a significant impact on
the accuracy of the simulation.

APPEARANCE
Water is transparent to light but not completely, resulting in fog the further
down you go. This can be implemented by sampling the distance between the water’s
surface and the next object behind it from the point of the camera, and changing
the alpha (transparency) value of the texture at that point accordingly.

Theo Stewart-Griffiths // 13H 4

SAILING

The strength of the forward force will be proportional to the cosine of the angle
between the two vectors x (the current forward vector of the boat) and y (the

direction of the wind)

The sailing system is based around the wind vector, which is the current direction
of the waves.

STEERING
A boat with sails will move based on its orientation with the wind. The forward
force the boat experiences is based on the cosine of the angle between the wind
and the direction of the boat.

When the sails and wind are aligned, θ → 0 and therefore cos θ → 1, so the
forward force will be strong. When the sails and wind are not aligned, θ → ±90
and therefore cos θ → 0. In summary, the boat will accelerate when the sails and
wind line up, but slow down when they do not. The user’s main controls will
therefore be the ability to rotate the boat, and begin its movement, as well as
orbit the camera about their selected object.

EXISTING SOLUTIONS
A similar concept exists in the game Valheim, in which players steer boats based
on the direction of the wind. This method is very similar to what I envision,
however I do not need most of the features (rowing, inventory, etc.)

Theo Stewart-Griffiths // 13H 5

BOIDS

Boids are an example of an emergent system - individuals following simple rules
that give rise to complex patterns.

A boid is a simulated flock; the original explanation of the boid algorithm by its
original author can be found here. Since the simulation is parametric, different
values can be passed in to alter the behaviour of the overall flock, allowing me
to create a flock of birds and a school of fish using the same code.

Boids take up a large amount of processing resources on the CPU, therefore
this part of the project will require significant optimisation. Current options
available for this include parallelisation either on the CPU or moving the
workload instead to a compute shader for the GPU, which is optimised for vector
calculations. The second method, while more efficient, will be significantly more
difficult to achieve, and therefore I believe I will instead process the boids on
the CPU.

COHESION
In a real flock, when one member comes across another they tend to stick together.
This behaviour is represented by the cohesive behaviour of boids. Boids will
detect others within their detection radius, and travel towards them. This, over
time, causes larger flocks to absorb smaller ones creating an eventual single
entity. To negate this, some randomness must also be added to create more chaotic,
unpredictable and realistic results.

ALIGNMENT
Individuals tend to steer themselves in a certain direction based on the average
of the direction of their neighbours to prevent them from colliding with each
other. Over time, the average direction of every bird in the flock will become
uniform, so some randomness will have to be added.

AVOIDANCE
Individuals also detect when other individuals get too close and steer to avoid a
collision. This means that within a certain radius, a repulsive force must be
applied.

Theo Stewart-Griffiths // 13H 6

https://www.red3d.com/cwr/boids/

FOCUS GROUP
My focus group understood my concept clearly and believed that my solution was a
sensible and straightforward way to solve the problem. They agreed with my choice
of stakeholders, namely engineers and physicists, but also suggested that the
addition of extra features such as a sailing system and flocking system would mean
that a game could be created using the features in my project.

CLOTH PHYSICS
The sails could be dynamic and respond to the wind by moving around like real
sails would.

● Cloth physics simulations are very complex
● Only an aesthetic feature rather than functional one

GENERATED LANDMASSES
Landmasses could be generated using Perlin noise

● Implementing land masses would be a good decision if the project were adapted
into a game

DIFFERENT TYPES OF BOAT
The user would have a choice to spawn different boats with different properties

● This is a good idea, however I will not be implementing it
● 2 or 3 different floating objects is enough for the project to function

PROTOTYPE OVERVIEW
PROTOTYPE FEATURES + SUCCESS CRITERIA

1 Buoyancy basics - sample height per vertex and apply force
Water basics - model water using sine waves on CPU

2 Water shader - model water using Gerstner waves on GPU
Buoyancy system - calculate upthrust based on volume immersed,
including rotational forces

3 Sailing basics - wind vector sets direction of waves
Waves - model water using Gerstner wave on CPU
Implement wave parameters

X Possible features:
Water shader polish - add transparency, depth fog, etc.
Sailing system
Boids system

Theo Stewart-Griffiths // 13H 7

REQUIREMENTS
REQUIREMENT REASON

OS (Windows 10) The executable file requires Windows 10 to run.

GPU (integrated or
discrete) with DX10-DX12
support

The water shader requires DirectX to run. This
comes installed on most Windows 10 computers.

CPU with x64/x86
architecture, minimum 2
cores

Unity executables for the Windows platform require
instructions found in the x64/x86 instruction set.

Standard peripherals -
keyboard, mouse + monitor

For input/output - however essentially all
computers have these.

Theo Stewart-Griffiths // 13H 8

DESIGN: PROTOTYPE 1
These success criteria have been chosen as they will produce a very simple
prototype version of the final project. All of the implemented features will have
to be refined in the future but as a proof-of-concept these objectives work well.

TASK SUCCESS CRITERIA

Calculate offset of
each vertex of an
object and apply a
force at point

Does the object rebound when dropped in water?
Does the object eventually reach equilibrium on
the water’s surface?

Create sine wave
approximation

Is each vertex’s position modelled by a sine wave
through time?
Is the correct vertex height applied to each
vertex?

Create static class
instance for wave
script

Is the wave manager script static?

Generate wave height
per vertex
individually

Does the wave height generate a y-coordinate from
an x-coordinate?

Calculate offset of
each vertex from wave
height and apply force

Does the object oscillate with the wave?

Generate parametric
water wave

Can the wavelength be set?
Can the wave speed be set?
Can the amplitude be set?

Move vertex
manipulation to shader

Does the wave shader create the same wave as the
CPU?

Upthrust force is
proportional to the
normal to the water’s
surface

Do floating objects float perpendicular to the
water’s surface?

Theo Stewart-Griffiths // 13H 9

DEVELOPMENT LOG: PROTOTYPE 1
ABSTRACTION/PSEUDOCODE

TASK 1: Each vertex on a given mesh needs to be sampled to check if it’s height
is below the water. Based on the height, a force will be applied at this
location.

PROCEDURE buoyancy()

FOREACH vertex IN object:

IF vertex.globalPosition.y < 0

ApplyForceAtPoint(vertex,

vertex.y * Vector3.up)

NEXT vertex

ENDPROCEDURE

● Any mesh in the simulation with the BuoyantObject component will now float
and reach equilibrium when the gravitational force is equal to the sum of
upthrust on each vertex.

● Some meshes with many vertices close together, such as a sphere, exhibit
jittery behaviour. The solution is to increase the angular drag on the
Rigidbody of the affected object.

TASK 2: The water’s vertices must oscillate through the y-axis following a sine
wave over time.

FUNCTION wave(Vector[] verts)

Vector[] newVerts = verts;

FOREACH vert IN newVerts:

vert.y = sin(vert.x + time) *

amplitude

NEXT vertex

RETURN newVerts

ENDFUNCTION

● The vertex manipulation will later be done on the GPU using a shader. GPUs
offer better parallelisation, which is suited for graphical operations
like this.

TASK 3: The wave manager class must be a static instance so that the wave
height can be sampled by both the physics and graphics scripts.

● Using a singleton design pattern here means that I will be able to access
the height of a wave at a certain point much faster, optimising the
program significantly.

Theo Stewart-Griffiths // 13H 10

● Creating the singleton in the OnEnable() function did not correctly
instantiate the singleton, however moving it to Awake() made it function
correctly. This is because the Awake() function is called earlier.

● Singletons are very useful but often regarded as over time you can lose
track of what is editing their values at runtime. In this project the
singleton classes will not have many externally changing values.

TASK 4: Instead of generating every vertex at the same time, one function
should be used which gives the wave’s height at a given x-coordinate.

FUNCTION getHeight(float x)

RETURN sin(x - time) * amplitude

ENDFUNCTION

● The advantages of doing this are that the wave equation only needs to be
changed in one place, and copied over to the shader. The wave equation can
be used for both the CPU-based physics calculation as well as the
GPU-based water simulation.

TASK 5: On a floating object, the height under the wave should be calculated by
sampling the wave equation. The buoyant force should be applied if the vertex
is underwater.

PROCEDURE buoyancy()

FOREACH vertex IN object:

d = vertex.y - getHeight(vertex.x)

IF d < 0

ApplyForceAtPoint(vertex, -d *

Vector3.up)

NEXT vertex

ENDPROCEDURE

● The vertex manipulation will later be done on the GPU using a shader.
GPUs offer better parallelisation.

TASK 6: Important parameters - the amplitude, wave speed and wavelength -
should be controlled from the editor, by changing the wave equation to

, where a = amplitude, = wavelength, v = wave speed𝑎 * 𝑠𝑖𝑛(2π/λ(𝑥 − 𝑣 𝑡)) λ

FUNCTION getHeight(float x)

k = 2 * PI / wavelength

RETURN amplitude * sin(k * (x - speed * time))

ENDFUNCTION

Theo Stewart-Griffiths // 13H 11

● This presented no problems as I already had the wave equation in my
research. The results were in line with what I expected.

● Changing this to a Gerstner wave may present some problems as the x- and
y-coordinate of a point are both defined by a function in trochoidal
waves, so the relationship between y and x is not mapped by a function.

TASK 7: The GPU is better suited for vertex manipulation, so instead of
manipulating the vertices on the CPU they should be changed on the GPU using a
shader.

PROCEDURE vertex(vertexData v)

k = 2 * PI / wavelength

v.y = amplitude * sin(k * (v.x -

speed * time))

update vertex

ENDPROCEDURE

● After learning the basics of GLSL in preparation for this project,
implementing the shader’s basics was straightforward.

● The custom shader has a few issues to resolve:
○ Shadows are not cast properly on the water’s surface
○ The water’s transparency does not work correctly (appears opaque in

front of some objects)
○ The CPU and GPU wave equations can be modified separately, causing them

to create separate waves as shown below:

Theo Stewart-Griffiths // 13H 12

TASK 8 [BUG #01]: The CPU wave equation should obtain its parameters directly
from the GPU wave equation to prevent them from changing independently.

PROCEDURE OnEnable()

IF material != NULL

amplitude = material.amplitude

speed = material.speed

wavelength = material.wavelength

ENDIF

ENDPROCEDURE

● Now, both forms of the wave function have identical parameters which are
uniformly controlled by the water material, which uses the custom water
shader.

● After testing, I found that if the material’s parameters are changed
during runtime they will not be copied to the WaveGenerator script.

● Therefore, this needs to go the other way - the material’s parameters must
be updated from the WaveGenerator script.

TASK 9: The GPU wave equation should obtain its parameters directly from the
CPU wave equation to prevent them from changing independently.

PROCEDURE Update()

IF material != NULL

material.amplitude = amplitude

material.speed = speed

material.wavelength = wavelength

ENDIF

ENDPROCEDURE

● To fix the previous issue I moved the previous code to the Update()
function. The parameters will eventually be controlled by UI instead of
sliders in the Editor.

Theo Stewart-Griffiths // 13H 13

TASK 10: The buoyant force should act upwards but locally instead of globally.

PROCEDURE buoyancy()

FOREACH vertex IN object:

d = vertex.y - getHeight(vertex.x)

IF d < 0

ApplyForceAtPoint(vertex, -d *

Vector3.localUp)

ENDIF

NEXT vertex

ENDPROCEDURE

● Testing this produced expected results. Objects are moved up on the local
y axis instead of the global y axis.

● This is a temporary approximation for the actual correct calculation - the
‘true’ upwards vector is the normal vector to the wave at a given point.
For this prototype, this approximation satisfies the success criteria so
it can be used instead.

TASK 11 [BUG #02]: Meshes with a high number of verts behave erratically.

● Meshes with a high number of vertices display a larger buoyant force than
meshes with a low number of vertices. This is because in this prototype, I
approximate the surfacic method by applying force per vertex rather than
per face.

● There are 3 temporary fixes I have for this problem:
○ Increase the distance a vertex has to be beneath the water before a

force is applied to it.
○ Increase the drag on each of the rigidbodies to increase their

resistance to motion.
○ Increase the magnitude of the force to reduce the jittering.

● I tested all three and the first and third produced unusual results,
making the second the one I chose.

● In order to keep gravity functioning, I now had to apply the gravitational
force per vertex in addition to the upthrust force.

PROCEDURE buoyancy()

FOREACH vertex IN object:

d = vertex.y - getHeight(vertex.x)

IF d < 0

ApplyForceAtPoint(vertex, -d *

Vector3.localUp)

ENDIF

ApplyForceAtPoint(vertex,

Vector3.down / object.vertices.length)

NEXT vertex

ENDPROCEDURE

● Overall this produces a much smoother floating behaviour, however the
jittering can return when the sphere lands on the crest of the wave. This
completes the last success criteria for the first prototype.

Theo Stewart-Griffiths // 13H 14

TESTING
Iterative feature tests are documented in the development log

TEST COMMENTS

INTERNAL ● I tested some of Unity’s other inbuilt meshes such as the
capsule and plane. They do float however tall objects
which should tip over do not. This will be fixed in
prototype 2.

USER 1 ● The objects float on the water in a simple but quite
realistic way. The water waves look quite simplistic but
this is only the first prototype.

● I like how the simulation looks - sometimes there are
glitches with the lighting.

The user is describing lighting artifacts. To fix this, I
changed the Lighting settings in Unity by setting the colour
space from linear to gamma.

USER 2 ● The sphere floats better than the cube but the difference
is only noticeable if you look closely when the wave has a
high amplitude.

● When I change the strength slider the objects are not
affected.

● Also, the water casts a shadow beneath it which looks
unnatural.

The variable strength on the WaveGenerator class should be
used for every floating object. To fix this I moved it to
the WaveGenerator singleton so that it was a static global
variable. To fix the shadow issue I added the tag noshadow
to the water.

Theo Stewart-Griffiths // 13H 15

EVALUATION
CRITERIA EVALUATION

Does the object rebound when
dropped in water?
Does the object eventually reach
equilibrium on the water’s surface?

These criteria were the first to be met
in the prototype, and have been met
completely.

Is each vertex’s position modelled
by a sine wave through time?
Is the correct vertex height
applied to each vertex?

These criteria are specific to the
first prototype, however they are met.

Is the wave manager script static? Singletons are generally considered bad
practice in large projects however in
this instance I believe that there is no
issue with using them.

Does the wave height generate a
y-coordinate from an x-coordinate?

At runtime, a static instance of this
class is created to manage the water
waves, by controlling the parameters
of the CPU- and GPU-based models.
However, as mentioned before, when
the GPU approach is changed to a
trochoidal wave, the
SampleWaveHeight() function will also
have to be changed. Trochoidal waves
are produced from a combination of
the oscillations in the x- and
y-axis, so the approach used here to
sample the value will not work on a
Gerstner wave.

Does the object oscillate with the
wave?

This criteria has been met however the
result is unrealistic as the objects
ignore rotational forces.

Can the wavelength be set?
Can the wave speed be set?
Can the amplitude be set?

These criteria have been met and the
wave has variable parameters. In the
next prototype I must establish a
sensible range for these values as user
2 noticed that extreme values will
affect the accuracy of the simulation.

Does the wave shader create the
same wave as the CPU?

This has also taught me the basics of
GLSL as I will have to add more to this
shader in subsequent prototypes.

Do floating objects float
perpendicular to the water’s
surface?

Objects definitely float perpendicular
to the surface but as mentioned before
this is not entirely accurate.

Theo Stewart-Griffiths // 13H 16

WaterShader Class (GLSL)

//water parameters

float _Amplitude, _Wavelength, _Speed;

// procedure applied to each vertex

void vert (inout appdata_full vertexData)

{

float3 v = vertexData.vertex.xyz;

//wave number

float k = 2 * UNITY_PI / _Wavelength;

v.y = _Amplitude * sin(k * (v.x - _Speed * _Time.y));

vertexData.vertex.xyz = v;

}

Theo Stewart-Griffiths // 13H 17

WaveGenerator Class (C#)

public class WaveGenerator : MonoBehaviour

{

//### singleton

public static WaveGenerator Instance;

void Awake()

{

if (Instance != null && Instance != this)

Destroy(this);

else

Instance = this;

}

//### reference variables

MeshFilter filter;

public Material waterMaterial;

//### wave equation parameters with default values;

[Range(0f, 1f)] public float amplitude = 0.5f;

[Range(1f, 20f)] public float wavelength = 5f;

[Range(-10f, 10f)] public float speed = 1f;

//### simulation parameters

[Range(0.1f, 15f)] public float strength = 9.81f;

void OnEnable()

{

filter = GetComponent<MeshFilter>();

}

void Update()

{

if (waterMaterial != null)

{

waterMaterial.SetFloat("_Amplitude", amplitude);

waterMaterial.SetFloat("_Wavelength", wavelength);

waterMaterial.SetFloat("_Speed", speed);

}

}

Vector3[] GenerateWaveVertices(Vector3[] verts)

{

Vector3[] newVerts = verts;

for (int i = 0; i < newVerts.Length; i++)

{

newVerts[i].y = SampleWaveHeight(newVerts[i].x);

}

return newVerts;

}

/// <summary>

Theo Stewart-Griffiths // 13H 18

/// using wave equation 1

/// f(x) = a * sin(k(x - ct))

/// </summary>

/// <param name="x">the x value</param>

/// <returns>the y value</returns>

public float SampleWaveHeight(float x)

{

float k = 2 * Mathf.PI / wavelength;

return Mathf.Sin(k * (x - speed * Time.time)) * amplitude;

}

public Vector3 SampleNormal(float x)

{

float k = 2 * Mathf.PI / wavelength;

float y = amplitude * Mathf.Cos(k * (x - speed * Time.time));

Vector3 n = new Vector3(-y, 1, 0);

return n.normalized;

}

}

BuoyantObject Class (C#)

[RequireComponent(typeof(MeshFilter))]
[RequireComponent(typeof(Rigidbody))]
public class BuoyantObject : MonoBehaviour
{

//### reference variables
Rigidbody rb;
MeshFilter filter;

void OnEnable()
{

filter = GetComponent<MeshFilter>();
rb = GetComponent<Rigidbody>();

}

public void Update()
{

ApplyBuoyancy();
}

/// <summary>
/// calculates and applies buoyant force to each vertex
/// </summary>
void ApplyBuoyancy()
{

Vector3 gravity = WaveGenerator.Instance.strength *
Vector3.down / filter.mesh.vertices.Length;

//for every vertex in the mesh
foreach (Vector3 vertex in filter.mesh.vertices)
{

//convert local to global position
Vector3 vt = transform.TransformPoint(vertex);
float d = vt.y - WaveGenerator.Instance.SampleWaveHeight(vt.x);

Theo Stewart-Griffiths // 13H 19

//if immersed, apply upward force
if (d < 0f)

rb.AddForceAtPosition(-d *
WaveGenerator.Instance.SampleNormal(vt.x) *

WaveGenerator.Instance.strength,
vt, ForceMode.Acceleration);

//apply gravity
rb.AddForceAtPosition(gravity, vt, ForceMode.Acceleration);

}
}

}

DESIGN: PROTOTYPE 2
After the success of the first prototype, the focus is now on improving the
physics calculations to create a more accurate, more realistic simulation, as well
as implementing a very useful feature with the camera controller.

TASK SUCCESS CRITERIA

Upthrust force is
proportional to the
normal to the water’s
surface

Do floating objects float perpendicular to the
water’s surface?

Gerstner wave on the
GPU

Does the water deform in a smooth parametric
Gerstner wave?

Gerstner wave on the
CPU

Can the x-position be approximated using any
relatively fast approximation method
Can the tangent function to the Gerstner wave be
found?
Can the normal function to the Gerstner wave be
found?
Do floating objects float perpendicular to the
water’s surface?

Camera controller Can the user select different objects to follow?
Can the user freely move the camera while in Free
Mode?
Can the user orbit the selected object in Follow
Mode?

Theo Stewart-Griffiths // 13H 20

DEVELOPMENT LOG: PROTOTYPE 2
ABSTRACTION/PSEUDOCODE

TASK 1: The buoyant force should be proportional to the normal to the water’s
surface. In prototype 1 this was done using the local ‘up’ vector on each
vertex, but this is not equal to the normal when the object is rotated.

𝑃(𝑥) = [𝑥, 𝑎 𝑠𝑖𝑛[𝑘(𝑥 − 𝑐𝑡)]] ∴ 𝑃'(𝑥) = [1, 𝑘𝑎 𝑐𝑜𝑠[𝑘(𝑥 − 𝑐𝑡)]]
𝑃'(𝑥) • 𝑁(𝑥) = 0

𝑁(𝑥) = [− 𝑃'𝑦, 𝑃'𝑥, 0] = [− 𝑘𝑎 𝑐𝑜𝑠[𝑘(𝑥 − 𝑐𝑡)], 1, 0]

FUNCTION getNormal(x)

k = 2 * PI / wavelength

y = amplitude * cos(k * (x - speed *

time))

Vector3 normal = (-y, 1, 0)

RETURN normal.normalised;

ENDFUNCTION

● This calculates the normal to the water’s surface, which produces much
more accurate behaviour than before. Tall objects now rotate and fall over
to land on their largest side.

● For now, the waves still use a sine wave. The maths will be more complex
for the parametric wave but the principle will be the same.

TASK 2: The water shader also needs to contain the normal vectors for each
vertex to create correct lighting.

PROCEDURE vertex(vertexData v)

k = 2 * PI / wavelength

x = k * (v.x - speed * time)

v.y = amplitude * sin(x)

v.normal = new Vector3(-k * amplitude * cos(x), 1, 0).normalised;

update vertex

ENDPROCEDURE

Theo Stewart-Griffiths // 13H 21

TASK 3: The water waves on the GPU should be modelled by a Gerstner wave
instead of a sine wave.

𝑃(𝑥, 𝑦) = [𝑥 + 𝑎 𝑐𝑜𝑠[𝑘(𝑥 − 𝑐𝑡)], 𝑎 𝑠𝑖𝑛[𝑘(𝑥 − 𝑐𝑡)]]

View on desmos.com

PROCEDURE vertex(vertexData v)

k = 2 * PI / wavelength

x = k * (v.x - speed * time)

v.x += amplitude * cos(x)

v.y = amplitude * sin(x)

v.normals.calculate

update vertex

ENDPROCEDURE

TASK 4: The CPU model must also use a Gerstner wave model to generate the
heights.

● Previously, height was a function of x-position. Now, both the x- and y-
positions are given by the multivariable function, so obtaining the height
will be more difficult.

● Initially I will just sample the height however this will not produce an
accurate result.

FUNCTION getHeight(x)

k = 2 * PI / wavelength

RETURN amplitude * sin(k * (x - speed

* time))

ENDFUNCTION

● As we can see above, the horizontal displacement which is a key component
of the Gerstner wave is not accounted for in the calculation, which causes
a noticeable inaccuracy.

● This discrepancy will be fixed in the future using approximations to
reduce the horizontal offset.

TASK 5: The CPU model must also use a Gerstner wave model to generate the
heights.

● I can use an approximation to find the vertical position of the Gerstner
wave at a given coordinate, by using the Newton-Raphson method. This is
where you can step back in a function to find a root of an equation.

● I intend to use one iteration for now as the time cost increases for each,
providing diminishing returns.

Theo Stewart-Griffiths // 13H 22

https://www.desmos.com/calculator/9uopsbvskn

,𝑥�₊₂ = 𝑥�₊₁ − 𝑑𝑥 𝑑𝑥 = 𝑥� − 𝑥�₊₁

FUNCTION Gerstner(x)

f = k(x - ct);

Vector2 P,

P.x = x + a * cos(f);

P.y = a * sin(f);

RETURN P

ENDFUNCTION

FUNCTION GetHeight(X0)

X1 = Gerstner(X0).x

X2 = 2 * X0 - X1

RETURN Gerstner(X2).y

ENDFUNCTION

● This solves the main problem of the object’s x-displacement being
inaccurate however now we are back to the object being displaced just
vertically rather than at a normal to the water’s surface

TASK 6: The CPU model must use a Gerstner wave model to generate the normals.

● The force applied to an object is always perpendicular to the water’s
surface. This must be accounted for in the simulation however the normal
to a Gerstner wave requires more complex calculations.

● We must find the derivative of a Gerstner wave with respect to the
x-coordinate, and then find the normal of the resulting tangent function.

𝑃(𝑥, 𝑦) = [𝑥 + 𝑎 𝑐𝑜𝑠[𝑘(𝑥 − 𝑐𝑡)], 𝑎 𝑠𝑖𝑛[𝑘(𝑥 − 𝑐𝑡)] , 0]
𝑃'(𝑥, 𝑦) = [1 − 𝑘𝑎 𝑠𝑖𝑛[𝑘(𝑥 − 𝑐𝑡)], 𝑘𝑎 𝑐𝑜𝑠[𝑘(𝑥 − 𝑐𝑡)] , 0]

𝑁(𝑥, 𝑦) = [− 𝑃'𝑦, 𝑃'𝑥, 0] =
][− 𝑘𝑎 𝑐𝑜𝑠[𝑘(𝑥 − 𝑐𝑡)], 𝑘𝑎 𝑠𝑖𝑛[𝑘(𝑥 − 𝑐𝑡)], 0

FUNCTION GetNormal(X0)

X1 = Gerstner(X0).x

X2 = 2 * X0 - X1

f = k(x - ct);

Vector2 P,

P.x = 1 - k * a * sin(f);

P.y = k * a * cos(f);

RETURN (-P.y, P.x, 0)

ENDFUNCTION

● Using the approximation for x, we can find the normal vector at any given
point on the wave. The normal force can then be calculated by multiplying
this vector.

Theo Stewart-Griffiths // 13H 23

● Overall the accuracy of the resulting simulation is very good. I tested
cubes, rectangles, spheres and capsules with increasing numbers of
vertices and saw consistent, predictable behaviour. Furthermore, even with
5 high-vert objects the reported framerate did not drop below 100FPS.

● The main problem so far is that
for any object, the upthrust is
based on the submerged vertices.
In reality, the faces should also
be included in the calculations.

● Ignoring faces, we may get
situations such as the one shown
to the right, where the wave can
intersect with the object and
cause inaccurate buoyancy.

● This is a limitation of using the
vertex-based method.

TASK 7: The camera should focus on an object when it is clicked on.

● The camera system involves two modes: Free Mode, where the user will be
free to move and rotate around however they want, and Control Mode, where
the user can select and steer a boat in the scene.

● In order to begin implementing the controls, I will be using Unity’s new
event-based input system and importing it into the project from the Unity
Package Manager.

PROCEDURE OnEnable()

controls.Click += OnClick();

ENDPROCEDURE

PROCEDURE OnUpdate()

IF target != NULL

Camera.MoveTo(target);

ENDIF

ENDPROCEDURE

PROCEDURE OnClick()

Raycast from mouse point

IF(ray.hit.object is of type

BuoyantObject)

target = ray.hit.object

ENDIF

ENDPROCEDURE

● The camera can now follow any buoyant object around.

Theo Stewart-Griffiths // 13H 24

TASK 8: Follow Mode camera can orbit the selected object.

● The camera needs to rotate around the selected target - x movement
correlates to the rotation around the global y-axis, and y movement
correlates to rotation around the local x-axis.

PROCEDURE OnUpdate()

IF MMB.held

Vector2 mouse =

Camera.ScreenPositionOfMouse

Quaternion turnX =

AngleAxis(mouse.x, world.up)

Quaternion turnY =

AngleAxis(mouse.y, local.right)

rotation *= turnX * turnY

ENDIF

ENDPROCEDURE

TASK 9 [BUG #03]: Follow Mode camera performs incorrectly at certain angles

● The camera does not perform as expected when it is near the poles of the
object selected. This is because of the angle - it needs to be clamped
between 5-80°. The problem with this is that Quaternions do not work the
same as Euler rotations so my procedure will have to use Euler angles
instead.

PROCEDURE OnUpdate()

IF MMB.held

Vector2 mouse =

Camera.ScreenPositionOfMouse

turnXY.x += mouse.x

turnXY.y += mouse.y

turnXY.y = clamp(5, 80)

rotation =

Quaternion.Euler(turnXY, 0)

offset = Vector3.back * rotation

…
ENDIF

ENDPROCEDURE

● The camera is now able to rotate around and is clamped in the vertical
direction.

● This bug also gave me the idea of implementing scroll zoom as the next
feature.

● The range chosen for the angle of the camera, highlighted in red in the
above pseudocode, was chosen so that the camera does not go too low and
clip into the wave, and also cannot go too high as if it went above 90 the
camera would be able to orbit the object upside down.

Theo Stewart-Griffiths // 13H 25

TASK 10: Follow Mode should allow the scroll wheel to zoom in and out.

PROCEDURE OnEnable()

...

WHEN Controls.scroll.performed =>

distance += scrollwheel.value

distance = clamp(2, 10)

...

ENDPROCEDURE

● The camera is now able to zoom in and out when the wheel is scrolled. The
distance is clamped between two values, 2 and 10, so that the camera
cannot clip into the object. These bounds are likely to be changed in the
future but for now they are fine.

TASK 11: Free Mode should be activated when the user presses F.

PROCEDURE OnEnable()

...

WHEN Controls.F.performed =>

FollowMode = Mode.Free

target = NULL

...

ENDPROCEDURE

● The camera is now able to switch between free and follow mode.

TASK 12: Free Mode controls (mouse rotation)

PROCEDURE OnUpdate()

IF MMB.held && CameraMode = Free

Vector2 mouse =

Camera.ScreenPositionOfMouse

turnXY.x += mouse.x

turnXY.y += mouse.y

turnXY.y = clamp(5, 80)

rotation =

Quaternion.Euler(turnXY, 0)

…
ENDIF

ENDPROCEDURE

● The camera rotated on the vertical axis in the wrong way, so instead of
adding the mouse y vector I subtracted it, fixing the problem.

Theo Stewart-Griffiths // 13H 26

TASK 13: Free Mode controls (WASD Motion)

PROCEDURE OnEnable()

...

WHEN Controls.WASD.performed =>

Vector2 dir = WASD.getVector

...

ENDPROCEDURE

PROCEDURE OnUpdate()

IF CameraMode == Follow

pos += transform.forward * dir.y

pos += transform.right * dir.x

…
ENDIF

ENDPROCEDURE

● The camera can now move around in space freely.

TASK 14: Adjusting the wave equation

𝑎 = 𝑠
𝑘 , 𝑠 = 𝑒𝑘𝑏 𝑐 = 𝑔

𝑘 = 𝑔λ
2π

● These new parameters (phase speed and steepness) improve the accuracy of
the water waves compared to real physics.

● Using abstraction also makes my code much easier to read and prevents any
calculations from being repeated which improves efficiency.

TESTING
Iterative feature tests are documented in the development log

TEST COMMENTS

INTERNAL ● As mentioned in the tests for prototype 1, I added other
3D colliders into the scene to observe them. They now
behaved much more realistically, obeying gravity and
rotating rather than remaining in a fixed perpendicular
position to the water.

USER 1 ● The floating objects float much better than before.
● The camera being able to move is a nice addition but the

controls feel a bit heavy and slow, and rotating the
camera can be quite sensitive and jittery.

● There should be a way of adding new objects to the scene
as having only 2 is not very interesting.

Theo Stewart-Griffiths // 13H 27

A spawn menu is a good idea for a feature in prototype 3.

USER 2 ● Sometimes the wave cuts through the middle of an object
but this is only noticeable if you are zoomed in with the
camera.

● Being able to follow different objects with the camera is
a really good addition. You need to be careful when you
click to select the right one.

EVALUATION
CRITERIA EVALUATION

Do floating objects float
perpendicular to the water’s
surface?

Objects now float perpendicular to the
surface but also obey the laws of
physics and can rotate/fall over. This
makes the sailing mechanics redundant as
objects will inevitably move in the same
way as the wind as this is also the same
way the water moves. I decided not to
include the wind mechanics in the third
prototype as a result.

Does the water deform in a smooth
parametric Gerstner wave?

The water shader now manipulates the
vertices with a Gerstner wave instead
of a sine wave.

Can the x-position be approximated
using any relatively fast
approximation method
Can the tangent function to the
Gerstner wave be found?
Can the normal function to the
Gerstner wave be found?
Do floating objects float
perpendicular to the water’s
surface?

The first and last of these success
criteria are only partially met. The
approximation used needs to be improved
in the third prototype, and objects do
not float perpendicular to the water’s
surface but in a direction which is
approximately perpendicular. The middle
2 were met by using calculus to find the
derivative.

Can the user select different
objects to follow?
Can the user freely move the camera
while in Free Mode?
Can the user orbit the selected
object in Follow Mode?

These criteria are technically met
and the camera system does have
complete functionality, but as user 1
reported it is not a ‘comfortable’
system to use. I decided to increase
the movement sensitivity, decrease
the mouse sensitivity and also
interpolate all the values in the
script which produced a smoother
experience.

Theo Stewart-Griffiths // 13H 28

WaterShader Class (GLSL)

// procedure applied to each vertex

void vert (inout appdata_full vertexData)

{

float3 v = vertexData.vertex.xyz;

//wave number

float k = 2 * UNITY_PI / _Wavelength;

float c = sqrt(9.8 / k);

float j = k * (v.x - c * _Time.y);

float a = _Steepness / k;

v.x += a * cos(j);

v.y = a * sin(j);

//tangent = (dx, dy, dz)

float3 tangent = normalize(float3(1 - _Steepness * sin(j), _Steepness

* cos(j), 0));

//normal = (-dy, dx, 0)

float3 normal = float3(-tangent.y, tangent.x, 0);

vertexData.vertex.xyz = v;

vertexData.normal = normal;

}

Theo Stewart-Griffiths // 13H 29

WaveGenerator Class (C#)

public class WaveGenerator : MonoBehaviour

{

//### singleton

public static WaveGenerator Instance;

void Awake()

{

if (Instance != null && Instance != this)

Destroy(this);

else

Instance = this;

}

//### reference variables

MeshFilter filter;

public Material waterMaterial;

//### wave equation parameters with default values;

[Range(0f, 1f)] public float steepness = 0.5f;

[Range(1f, 20f)] public float wavelength = 5f;

//### simulation parameters

[Range(0.1f, 15f)] public float strength = 9.81f;

void OnEnable()

{

filter = GetComponent<MeshFilter>();

}

void Update()

{

if (waterMaterial != null)

{

waterMaterial.SetFloat("_Steepness", steepness);

waterMaterial.SetFloat("_Wavelength", wavelength);

}

}

public float SampleGerstnerHeight(float x)

{

/* GERSTNER WAVE IMPLEMENTATION */

//k, the wavenumber

float k = 2 * Mathf.PI / wavelength;

float c = Mathf.Sqrt(9.8f / k);

//j = k(x - ct)

float j = k * (x - c * Time.time);

Theo Stewart-Griffiths // 13H 30

float a = steepness / k;

//round 1

float x1 = x + a * Mathf.Cos(j);

float x2 = 2 * x - x1;

float j2 = k * (x2 - c * Time.time);

float y3 = a * Mathf.Sin(j2);

return y3;

}

public Vector3 SampleGerstnerNormal(float x)

{

/* GERSTNER WAVE IMPLEMENTATION */

//k, the wavenumber

float k = 2 * Mathf.PI / wavelength;

float c = Mathf.Sqrt(9.8f / k);

//j = k(x - ct)

float j = k * (x - c * Time.time);

float a = steepness / k;

//resulting point

float x1 = x + a * Mathf.Cos(j);

//find new approximation

float x2 = 2 * x - x1;

//find new j

j = k * (x2 - c * Time.time);

//find gradient

float dx = 1 - steepness * Mathf.Sin(j);

float dy = steepness * Mathf.Cos(j);

//normal

return new Vector3(-dy, dx, 0).normalized;

}

}

Theo Stewart-Griffiths // 13H 31

BuoyantObject Class (C#)

[RequireComponent(typeof(MeshFilter))]

[RequireComponent(typeof(Rigidbody))]

public class BuoyantObject : MonoBehaviour

{

//### reference variables

Rigidbody rb;

MeshFilter filter;

void OnEnable()

{

filter = GetComponent<MeshFilter>();

rb = GetComponent<Rigidbody>();

}

public void Update()

{

ApplyBuoyancy();

}

/// <summary>

/// calculates and applies buoyant force to each vertex

/// </summary>

void ApplyBuoyancy()

{

Vector3 gravity = WaveGenerator.Instance.strength *

Vector3.down / filter.mesh.vertices.Length;

//for every vertex in the mesh

foreach (Vector3 vertex in filter.mesh.vertices)

{

//convert local to global position

Vector3 vt = transform.TransformPoint(vertex);

/* GERSTNER WAVES */

float d = vt.y - WaveGenerator.Instance.SampleGerstnerHeight(vt.x);

if(d < 0f)

rb.AddForceAtPosition(-d *

WaveGenerator.Instance.SampleGerstnerNormal(vt.x) *

WaveGenerator.Instance.strength,

vt, ForceMode.Acceleration);

//apply gravity

rb.AddForceAtPosition(gravity, vt, ForceMode.Acceleration);

}

}

}

Theo Stewart-Griffiths // 13H 32

CameraController Class (C#)

public class CameraController : MonoBehaviour

{

//## reference variables

Controls controls;

Transform target;

//##camera default offset

public Vector3 offset;

Vector3 currentOffset;

//##camera state

public CameraState currentState;

float sensitivity = 0.25f;

float distance = 3f;

bool MMB = false;

Vector2 turnXY = new Vector2(0, 0);

Vector2 movDir = new Vector2(0, 0);

void OnEnable()

{

currentState = CameraState.Free;

currentOffset = offset;

controls = new Controls();

controls.Enable();

controls.Camera.LMB.performed += OnLMB;

controls.Camera.MMB.performed += ctx => { MMB = true; };

controls.Camera.MMB.canceled += ctx => { MMB = false; };

controls.Camera.Scroll.performed += ctx =>

{

float target = Mathf.Clamp(distance + (ctx.ReadValue<float>()) /

-120f, 2, 6);

distance = Mathf.Lerp(distance, target, 0.5f);

};

controls.Camera.WASD.performed += ctx => { movDir =

ctx.ReadValue<Vector2>().normalized; };

controls.Camera.WASD.canceled += ctx => { movDir = Vector2.zero; };

controls.Camera.F.performed += ctx =>

{

if (currentState == CameraState.Follow)

{

Vector3 f = transform.forward;

Theo Stewart-Griffiths // 13H 33

currentState = CameraState.Free;

target = null;

transform.rotation = Quaternion.LookRotation(f, transform.up);

}

};

}

/// <summary>

/// method called on left mouse click

/// </summary>

/// <param name="context">the event details</param>

public void OnLMB(InputAction.CallbackContext context)

{

Ray ray =

Camera.main.ScreenPointToRay(Mouse.current.position.ReadValue());

RaycastHit hit;

if(Physics.Raycast(ray, out hit, 100f))

{

if(hit.transform.gameObject.GetComponent<BuoyantObject>() != null)

{

target = hit.transform;

currentState = CameraState.Follow;

currentOffset = (3f * Vector3.back);

}

}

}

/// <summary>

/// occurs every frame

/// </summary>

void Update()

{

HandleMotion();

}

void HandleMotion()

{

//if there is a current target

if (currentState == CameraState.Follow)

{

//if the middle mouse button is being held

if (MMB)

{

Vector2 mouse = Mouse.current.position.ReadValue();

Vector2 offset = new Vector2(Screen.width / 2, Screen.height / 2);

mouse = (mouse - offset) * Time.deltaTime * sensitivity;

//set the mouse rotation

turnXY.x += mouse.x;

Theo Stewart-Griffiths // 13H 34

turnXY.y += mouse.y;

turnXY.y = Mathf.Clamp(turnXY.y, -10f, 80f);

}

//set the offset vector

currentOffset = Quaternion.Euler(turnXY.y, turnXY.x, 0) * (distance *

Vector3.back);

transform.position = Vector3.Lerp(transform.position, target.position

+ currentOffset, 0.5f);

transform.LookAt(target);

}

else

{

if (MMB)

{

Vector2 mouse = Mouse.current.position.ReadValue();

Vector2 offset = new Vector2(Screen.width / 2, Screen.height / 2);

mouse = (mouse - offset) * Time.deltaTime * sensitivity;

//set the mouse rotation

turnXY.x += mouse.x;

turnXY.y -= mouse.y;

turnXY.y = Mathf.Clamp(turnXY.y, -70f, 70f);

}

Vector3 pos = (transform.forward * movDir.y + transform.right *

movDir.x) * 0.1f ;

pos += transform.position;

//set the camera rotation

Quaternion rot = Quaternion.Euler(turnXY.y, turnXY.x, 0);

transform.rotation = Quaternion.Lerp(transform.rotation, rot, 0.4f);

transform.position = Vector3.Lerp(transform.position, pos, 0.3f);

}

}

void OnDisable()

{

controls.Disable();

}

}

public enum CameraState

{

Free,

Follow

}

Theo Stewart-Griffiths // 13H 35

DESIGN: PROTOTYPE 3
TASK SUCCESS CRITERIA

Wind direction Does the wave change direction?
Can the direction be controlled by an angle
variable?
Does the wave change direction in real time?

Physics simulation One Newton-Raphson iteration
Multiple Newton-Raphson iterations

UI Menu + Sliders for wave parameters
Does the slider update the wave in real time?

Spawning + deleting
objects

Menu + list of spawnable objects
Can objects be spawned in?
Can objects be deleted?

DEVELOPMENT LOG: PROTOTYPE 3
ABSTRACTION/PSEUDOCODE

TASK 1: Changing the direction of the wave

𝐷(𝑥, 0, 𝑧) = 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟
𝑃 = (𝑥 + 𝐷𝑥 𝑠

𝑘 𝑐𝑜𝑠 𝑗, 𝑠
𝑘 𝑠𝑖𝑛 𝑗, 𝑧 + 𝐷𝑧 𝑠

𝑘 𝑐𝑜𝑠 𝑗)

PROCEDURE vertex(vertexData v)

k = 2 * PI / wavelength

j = k * (dot(dir, v.xz) - speed *

time)

a = steepness / k

v.x += dx * a * cos(j)

v.y = a * sin(j)

v.z += dz * a * cos(j)

update vertex

ENDPROCEDURE

● The wave can now have its direction changed.

Theo Stewart-Griffiths // 13H 36

TASK 2: Changing the direction of the wave, part 2

𝐷 = (𝑐𝑜𝑠 θ, 0, 𝑠𝑖𝑛 θ)

PROCEDURE OnEnable()

Vector4 vec = (cos(a), sin(a), 0, 0)

waterMaterial.SetVector("Direction", vec)

ENDPROCEDURE

● The wave can now have its direction changed in realtime directly from the
editor.

● The trigonometric functions in Unity take their parameters as radians
rather than degrees. The angle has to be multiplied by a constant first
(Mathf.Deg2Rad).

TASK 3: Changing the direction of the wave, part 3

FUNCTION 2DGerstnerHeight(Vector3 p)

k = 2 * PI / wavelength

c = sqrt(9.8f / k)

a = s / k

v = (p.x, p.z);

j = k(D.(x, z) - ct)

RETURN a * sin(j);

ENDFUNCTION

● The wave’s direction is now sampled in the height function.
● The dot product of the direction vector changes the input value of sin()

depending on which direction the D vector is pointing in. The height of
the wave now depends on both the x and z coordinate of the point.

TASK 4: Newton-Raphson approximation for height

FUNCTION 2DGerstnerHeight(Vector3 p)

...

v.x += Dx * a * cos(j)

v.y += Dy * a * cos(j)

j = k(D.(x, z) - ct)

...

ENDFUNCTION

● The structure used for this means that I can now iterate through a
specific number of Newton-Raphson approximations. This refactoring will be
extremely useful in the later stages of this prototype.

Theo Stewart-Griffiths // 13H 37

TASK 5: Newton-Raphson implementation in normal vector

𝑇 = 𝑃'𝑥 = (1 − 𝐷²𝑥 * 𝑠 𝑠𝑖𝑛 𝑗, 𝐷𝑥 * 𝑠 𝑐𝑜𝑠 𝑗, − 𝐷𝑥𝐷𝑧 * 𝑠 𝑠𝑖𝑛 𝑗)
𝐵 = 𝑃'𝑧 = (− 𝐷𝑥𝐷𝑧 * 𝑠 𝑠𝑖𝑛 𝑗, 𝐷𝑧 * 𝑠 𝑐𝑜𝑠 𝑗, 1 − 𝐷²𝑧 * 𝑠 𝑠𝑖𝑛 𝑗)

𝑁 = 𝐵 × 𝑇

● In order to calculate the normal,
first I must find the partial
derivative of the wave’s surface in
the x-direction (tangent) and also
in the z-direction (binormal). The
normal vector will be the cross
product of these two vectors.

FUNCTION 2DGerstnerVector(Vector3 p)

...

tangent = (1 - dx * dx * s * sin(j),

dx * s * cos(j),

-dx * dz * s * sin(j))

binormal = (-dx * dz * s * sin(j),

dz * s * cos(j),

1 - dz * dz * s * sin(j))

RETURN cross(tangent, binormal)

ENDFUNCTION

TASK 6: Refactoring the wave function

● The wave script performs the same calculation twice a frame. I can
increase the efficiency by combining the height and normal into a single
Vector4.

FUNCTION GerstnerVector(Vector3 p)

...

RETURN Vector4(n.x, n.y, n.z, h)

ENDFUNCTION

● Now the wave equation can be changed in one single location. The actual
accuracy of the approximation will have to be increased as it still does
not produce a completely accurate height, but the normal vector is now
correct.

Theo Stewart-Griffiths // 13H 38

TASK 7: Approximating the x and z roots

● The approximation for the inverse function is now quite inaccurate. The
new approximation must include both the x- and z- axis which makes it more
complex. However since we have already calculated the tangent we just have
to do the same calculation in 2 dimensions.

𝑥
𝑛+1

 = 𝑥
𝑛
 − 𝐷𝑥 * 𝑠 * 𝑐𝑜𝑠 𝑗

𝑧
𝑛+1

 = 𝑧
𝑛
 − 𝐷𝑧 * 𝑠 * 𝑐𝑜𝑠 𝑗

FOR i = 0 TO n

v.x -= d.x * steepness *

cos(j)

v.y -= d.y * steepness *

cos(j)

j = k * (D.v - ct)

NEXT i

● This approximation uses the fact that the step backwards is usually too
large compared to the actual difference.

● It is hard to see whether this has significantly improved the accuracy of
the simulation, however from inspection I can see that the objects lie
closer to the surface of the water than before. For very high numbers of
Newton-Raphson approximations efficiency decreases significantly.

● After some testing, I determined that a good number of iterations was 3,
balancing time with accuracy and producing a reasonable result. When the
wave parameters take extreme values, the accuracy decreases regardless of
the number of iterations.

TASK 8: Implementing the UI

● The UI involves a button which toggles the menu, and a set of sliders
which allow the user to set the parameters of the wave.

Theo Stewart-Griffiths // 13H 39

PROCEDURE ToggleMenu()

menu.Active = !menu.IsActive

ENDPROCEDURE

PROCEDURE SetValue()

Wave.value = slider.value

Text = "Property: " +

toString(slider.value)

ENDPROCEDURE

● This works correctly however as shown in the screenshot there are problems
with the text width and also that the sliders are not initially set to the
wave parameter, which means that as soon as the UI is opened and a slider
is updated the wave’s parameters are set to zero.

TASK 9 [BUG #04]: Fixing the UI

● Fixing the UI required the slider
values and text to be initialised
in the OnEnable() procedure in the
UIManager class. The slider values
are set first, the values are
rounded and then the text is given
the rounded value instead to
prevent the number from occupying
too much space in the text box.

TASK 10 [BUG #05]: Limiting the parameters

● The values of the wave’s parameters
can take values which produce
unrealistic behaviour, such as
shading lighting errors, which are
not representative of real physical
results.

● The best way to handle this is to
adjust the value’s ranges so that
they cannot take extreme values.

● For the amplitude, I chose 0-0.4 as this prevented any sharp edges from
forming at the wave apex. Edges cannot have their normal vertices sampled
and produce unexpected results, so removing them improves accuracy.

Theo Stewart-Griffiths // 13H 40

● For the wavelength, I chose 5-50. The vertices of the water are 1 unit
apart so any wave smaller than about 5 will appear jagged instead of
smooth. The wave plane is also 100x100 units so 50 allows 2 full waves to
exist inside the plane.

● For the angle, the range is naturally between 0 and 360 as this is one
full turn.

TASK 11: Spawn Menu

● The UI has been cleaned up and a
new Spawn Menu section has been
added.

● Adding this was very easy as the UI
system uses modular elements and
modular functions as I would
imagine it will be expanded in the
future.

TASK 12: Spawn Menu functionality

● The Spawn Manager class will be a singleton that links to the spawn menu
and when a button is clicked a corresponding object will be spawned in.

PROCEDURE SpawnObject(index)

InstantiateNew(objects[index], (0, 0,

0))

ENDPROCEDURE

● Each button passes a different index to the class which then selects which
object is spawned in. Objects will also need to be deleted.

TASK 13: Delete Selected Item functionality

● The delete button should only appear when there is an item being followed.
When clicked, it should return the camera to free mode and delete the
object from the scene. For this to work the CameraController class must be
made into a singleton so the selected floating object can be easily
accessed as it will be static.

Theo Stewart-Griffiths // 13H 41

PROCEDURE DeleteObject()

Camera.Unlink()

Destroy(Camera.target)

ENDPROCEDURE

● The delete button does not vanish when an object is deleted, nor does it
appear when a new object is selected.

TASK 14 [BUG #06]: Setting delete button

PROCEDURE SetButton(targetState)

IF Camera.State == Follow AND

spawnMenu is active:

deleteButton.state = targetState;

ELSE

deleteButton.state = inactive;

ENDIF

ENDPROCEDURE

● I moved the delete button logic
to a new public procedure that
gets called under the two
circumstances mentioned in the
previous task.

● It takes in a target state for
the delete button (active or
inactive) and determines if the
delete button should be in that
state or not.

TASK 15: Spawn Menu

● I added an instruction menu in the
UI after showing my project to my
focus group, which was a good
addition to improve the usability
of the program. The instructions
are clear and concise.

TASK 16: Cleanup

● My code needed to be commented on and refactored in some places. I also
got rid of obsolete sections, as I had commented out obsolete functions
and variables instead of deleting them just in case I needed to roll back
to a previously working section of code.

Theo Stewart-Griffiths // 13H 42

END USER TESTING
With the testing, I asked my end users to attempt to break the simulation and do
things that I would not have thought to do. Below are their comments as well as
what I did to fix any serious issues which they encountered.

TEST COMMENTS

USER 1 ● The simulation looks quite accurate especially with spheres.
They float well.

● The UI looks very sleek and simplistic and is not crowded.
● I like how the changes to the wave can be seen in real time

rather than having to close the menu, but the sliders are
quite sensitive if they are dragged very quickly.

● I can cause the frame rate to drop very low if I spawn in a
large number of objects.

USER 2 ● Even though the graphics are quite simple I can see the
potential behind the simulation.

● The range of spawnable objects is limited but they each
demonstrate how the simulation works.

● The instruction menu makes the controls easy to understand
and the menu is organised very logically.

● If the wave sliders are changed very quickly objects can be
launched over the edge of the walls.

POLISHING
TASK 1: Increasing wall height

● I scaled up the walls around the
water as well as their colliders on
the y-axis to prevent any objects
reaching over the top.

● I decided that a scale factor of
x10 vertically was enough to
produce a high enough wall to
prevent any objects from escaping
the scene.

TASK 2: Implementing spawn limit

Theo Stewart-Griffiths // 13H 43

● I added a counter that was
increased or decreased when the
user spawned or deleted an object.
This appears as a counter in the
spawn menu as shown in the picture
on the right. 20 objects seemed
like a reasonable upper limit.

EVALUATION
CRITERIA EVALUATION

Does the wave change direction?
Can the direction be controlled by
an angle variable?
Does the wave change direction in
real time?

These success criteria are all met. The
wave does change direction and so do
objects on the wave’s surface in real
time when the slider in the menu is
changed.

One Newton-Raphson iteration
Multiple Newton-Raphson iterations

The Newton-Raphson loop can have any
upper limit but as discussed earlier 3
was chosen as a sensible balance
between accuracy and time.

Menu + Sliders for wave parameters
Does the slider update the wave in
real time?

There is a slider for amplitude,
wavelength and angle, each of which has
a formatted text value and updates the
wave in real time.

Menu + list of spawnable objects
Can objects be spawned in?
Can objects be deleted?

Objects can be spawned and deleted in
real time very easily using the spawn
menu.

Theo Stewart-Griffiths // 13H 44

EVALUATION
GALLERY

The starting scene with the 2 default objects - cuboid and sphere.

The camera is orbiting a single object.

Theo Stewart-Griffiths // 13H 45

20 objects have been spawned in - this is the maximum

The instructions

Theo Stewart-Griffiths // 13H 46

Objects floating on a wave with parameters a=0.2, w=5, d=45

The same scene, but every object has been deleted using the delete button which
appears in the menu when an object is selected.

Theo Stewart-Griffiths // 13H 47

SUCCESS CRITERIA
SCRIPT ANALYSIS + CRITERIA MET

WaveGenerator ● The script meets the success criteria established during the
analysis, as well as the criteria established in each
prototype. The conversion of the Vector3 and float function
which returned the normal vector and target height of the
wave to a single Vector4 function increased the efficiency
of the program significantly, as the same calculations were
repeated twice. The return data could be reduced to a single
variable with the w-component representing the target
height.

● This Vector4 has to be separated into a Vector3 and float
anyway, but there is a function built into Unity which
removes the w-component so this process is still very
efficient.

● Calculating the actual solution instead of using the
Newton-Raphson approximation would have required much more
complexity and probably resulted in a much slower program,
as the calculations have to be done for every single vertex.
It is quite obvious that this approach was better, but the
performance difference for most modern computers is probably
very small. This is an example of the tradeoff between time
and space in Computer Science.

● An obvious drawback of the approximation is a lack of
accuracy. To prevent the performance from being affected
significantly, the number of iterations of the
Newton-Raphson algorithm must be kept to around 3, so the
actual normal vector/height above the wave is only accurate
for relatively small waves. To address this problem I
reduced the range of the wave parameters to prevent giant
waves with unrealistic values being simulated.

● These methods involve matrix multiplication as they perform
calculations on vectors which are a type of matrix. GPUs are
optimised for matrix and tensor maths so as a result it may
have been easier to parallelise this on the GPU using a
compute shader. If this was a high-level commercial project
then this is what I would have done, as it would have led to
a significantly better end product. However, the
requirements would have been much higher as the GPU power
needed for such calculations exceeds the average PC.

UIManager ● The UIManager in my opinion does exactly what it needs to.
It is by nature very modular as it must perform particular
actions for each button. Even though these functions are
very similar, the fact that they each operate on a different
object means that I could not refactor them into a single
function, which is what I usually attempt to do with
subprograms that have identical functions.

Theo Stewart-Griffiths // 13H 48

● I think that the UI’s minimalist nature fits the program
very well. I made sure that UI/UX was not a high priority in
the development however ensuring that there is a consistent
UI experience is very important for all software. This was
the hardest part to test as I had to ensure each sequence of
controls/buttons led to the correct outcome.

● In terms of usability, the UI is very straightforward and
clear. Each button has a textbox which tells the user what
it does, as well as instant feedback on the sliders which
tell the user what the current settings are. The separation
of the UI into a wave parameter and spawn menu element makes
it very clear what each part does.

SpawnManager ● The spawn system is fairly rudimentary and works well,
however it may not scale to extra items. If I continued to
develop the software this is one of the areas I would like
to improve on, giving the user the option to either import
their own models or choose from a selection of inbuilt
models rather than just cubes and spheres. The success
criteria have been met however as this is a variety of
objects which can easily be expanded in the future.

● One problem I have identified with the spawn system is the
fact that technically there is no upper limit on the number
of spawned items. The user could spawn in an unlimited
number of buoyant objects - since simulating each has such a
large performance cost, this could potentially cause the
instance of the program to crash. As a problem this would be
easy to fix - every spawned item should be added to a list
and if the list exceeds a certain length then no new items
can be spawned.

CameraController ● The camera movements have been tested thoroughly through my
use of the program, as they were needed to navigate and
interact with objects while I was testing the program. I
tweaked this script during development to make it easier for
me to use my own project.

● Examples include limiting the rotation of the camera by
clamping it between two values, as over-rotation of the
camera led to it clipping into the water and into other
objects. In a way this is the system that has been tested
the most due to its frequent use. I initially did not
consider the camera system as important and it came as an
add-on at the end of prototype 2. This is a reflection on
how development of software can throw unexpected problems
which require a project to change its direction and new
features may end up becoming the focus of the program.

● Overall the camera controller meets almost all of the
success criteria. According to some of my focus group who
tested the final project, it can feel heavy (due to the
interpolation of the motion), sluggish (due to the latency

Theo Stewart-Griffiths // 13H 49

of the input system) and counterintuitive (the camera can
accelerate and jitter if the mouse is moved too quickly).
There is more polishing which could be done with this
system.

BuoyantObject ● The buoyant object system meets the success criteria I set
initially and during each prototype even though the solution
I chose did not match the one I initially devised. This is
because during development I realised that my original
algorithm using the surfacic approach would have a very high
performance overhead as new vertices would have to be
generated and used for extra accuracy every time the
simulation added a new object. I instead opted to
approximate the surfacic method by measuring the number of
vertices and their distance underwater, applying a force
normal to the water’s surface at these points.

● As mentioned, this meets the success criteria - objects
produce accurate results and float in a reasonably realistic
manner, the accuracy of which increases for higher vertex
meshes such as spheres. This is because the number of sample
points increases with the number of vertices.

● The limitations of this approach occur when an object has a
low number of vertices, such as the rectangle object. In the
simulation, if the parameters are set to their maximum
values, only the corners of the shape will appear to float
on the water’s surface.

FUTURE FEATURES
FEATURE ANALYSIS

Sailing
mechanics

● The sailing mechanic is not compatible with the current wave
generation system. Objects will move in the same direction
as the wind anyway as that is the way which the wave
travels.

● In the future, larger objects travelling on smaller waves
could utilise a sailing mechanic to travel, or instead of a
sailing mechanic they could have propellers like actual
boats. This system would be very easy to implement - the
object could be selected by the camera, rotated using the A
and D keys, and the W and S keys could be used to travel
forwards and backwards respectively.

● This feature was originally suggested to me by a focus
group, who said that the core concept could easily be
applied to a game.

Theo Stewart-Griffiths // 13H 50

Boids ● The boids system was not implemented in the final project as
I decided to instead spend my time focusing on the important
features of the project.

● This feature, like the wave system, is very
resource-intensive and as a result if it were implemented
would likely have a significant performance cost making the
project appear less polished.

● As a purely aesthetic feature it was sensible to opt out of
including it, however in a future prototype I think it would
be a very suitable feature to include to further take the
project down the game route.

Landmass
generation

● Using Perlin noise or other sampled noise, landmasses could
be made in order to create an infinite sailing simulation.

● As a feature to add this would not be extremely complex but
would definitely improve the quality of the project and make
it more aesthetically pleasing.

CONCLUSION
Overall, my project meets all of the success criteria to some degree in
functionality, maintainability and expandability. My methods of tackling each
decomposed problem using modular code means that development was very
straightforward and I produced a final project which functions very well. This
project has required me to learn new skills, such as GLSL to produce the shader
and also the use of multivariable calculus to determine the derivative of a wave
function. There are plenty of different directions I could also choose to continue
this project in the future if I were to develop a fourth prototype, for example,
which would integrate well with the foundations of the project I have created.

Theo Stewart-Griffiths // 13H 51

FINAL CODE
WaveGenerator Class (C#)

Manages the wave on the CPU so its height can be sampled.

public class WaveGenerator : MonoBehaviour

{

//### singleton

public static WaveGenerator Instance;

void Awake()

{

if (Instance != null && Instance != this)

Destroy(this);

else

Instance = this;

}

//### reference variables

MeshFilter filter;

public Material waterMaterial;

//### parameters with default values

[Range(0f, 0.4f)] public float steepness = 0.1f;

[Range(5f, 50f)] public float wavelength = 10f;

[Range(0f, 360f)] public float angle = 0f;

[Range(0.1f, 15f)] public float strength = 9.81f;

//### direction vector

Vector2 d;

void OnEnable()

{

filter = GetComponent<MeshFilter>();

}

void Update()

{

if (waterMaterial != null)

{

waterMaterial.SetFloat("_Steepness", steepness);

waterMaterial.SetFloat("_Wavelength", wavelength);

//calculate the direction vector from the angle

float theta = angle * Mathf.Deg2Rad;

d = new Vector2(Mathf.Cos(theta),Mathf.Sin(theta)).normalized;

Vector4 vec = new Vector4(d.x, d.y, 0, 0);

waterMaterial.SetVector("_Direction", vec);

}

Theo Stewart-Griffiths // 13H 52

}

/// <summary>

/// calculates the normal vector and height for a given x and z position

/// </summary>

/// <param name="x">input x - position</param>

/// <param name="z">input z - position</param>

/// <returns>vector4 (normal.x, normal.y, normal.z, height)</returns>

public Vector4 SampleGerstnerWave(float x, float z)

{

//k, the wave number

float k = 2 * Mathf.PI / wavelength;

//c, the wave speed

float c = Mathf.Sqrt(9.8f / k);

//a = s / k

float a = steepness / k;

Vector2 v = new Vector2(x, z);

//j = k(D.(x, z) - ct)

float j = k * (Vector2.Dot(d, v) - c * Time.time);

//2 Newton-Raphson iterations

for (int i = 0; i < 3; i++)

{

v.x -= d.x * steepness * Mathf.Cos(j);

v.y -= d.y * steepness * Mathf.Cos(j);

j = k * (Vector2.Dot(d, v) - c * Time.time);

}

//tangent

Vector3 tangent = new Vector3(1 - (d.x * d.x * steepness * Mathf.Sin(j)),

d.x * steepness * Mathf.Cos(j),

-d.x * d.y * steepness * Mathf.Sin(j));

//binormal

Vector3 binormal = new Vector3(-d.x * d.y * steepness * Mathf.Sin(j),

d.y * steepness * Mathf.Cos(j),

1 - (d.y * d.y * steepness *

Mathf.Sin(j)));

//normal

Vector3 normal = Vector3.Cross(binormal, tangent).normalized;

return new Vector4(normal.x, normal.y, normal.z, a * Mathf.Sin(j));

}

}

Theo Stewart-Griffiths // 13H 53

UIManager Class (C#)

Manages the functionality of the UI (buttons & sliders)

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.UI;

using System;

public class UIManager : MonoBehaviour

{

//### singleton

public static UIManager Instance;

void Awake()

{

if (Instance != null && Instance != this)

Destroy(this);

else

Instance = this;

}

//### reference variables

public GameObject parameterMenu;

public GameObject spawnMenu;

public GameObject deleteButton;

public GameObject instructionButton;

public GameObject instructionMenu;

public Text counterText;

public Slider steepnessSlider;

public Text steepnessText;

public Slider wavelengthSlider;

public Text wavelengthText;

public Slider angleSlider;

public Text angleText;

void OnEnable()

{

//initialise all UI elements

parameterMenu.SetActive(false);

spawnMenu.SetActive(false);

deleteButton.SetActive(false);

instructionButton.SetActive(false);

instructionMenu.SetActive(false);

steepnessSlider.value = WaveGenerator.Instance.steepness;

SetSteepnessText();

wavelengthSlider.value = WaveGenerator.Instance.wavelength;

SetWavelengthText();

angleSlider.value = WaveGenerator.Instance.angle;

Theo Stewart-Griffiths // 13H 54

SetAngleText();

}

/// <summary>

/// sets the menu state

/// </summary>

public void ToggleMenu()

{

//is the menu meant to be on or off

bool targetState = !parameterMenu.activeSelf;

parameterMenu.SetActive(targetState);

spawnMenu.SetActive(targetState);

SetDeleteButton(targetState);

instructionButton.SetActive(targetState);

instructionMenu.SetActive(false);

}

/// <summary>

/// sets the delete button state

/// </summary>

/// <param name="target">the target state - on or off</param>

public void SetDeleteButton(bool target)

{

//delete button only on if object is being followed

if (CameraController.Instance.currentState == CameraState.Follow &&

spawnMenu.activeSelf)

deleteButton.SetActive(target);

else

deleteButton.SetActive(false);

}

/// <summary>

/// called when the instruction button is pressed

/// </summary>

public void InstructionButtonPressed()

{

//if the instructions are closed

if (!instructionMenu.activeSelf)

{

spawnMenu.SetActive(false);

parameterMenu.SetActive(false);

instructionMenu.SetActive(true);

SetDeleteButton(false);

}

else

{

spawnMenu.SetActive(true);

parameterMenu.SetActive(true);

Theo Stewart-Griffiths // 13H 55

instructionMenu.SetActive(false);

SetDeleteButton(true);

}

}

/// <summary>

/// sets steepness UI + value

/// </summary>

public void SetSteepness()

{

WaveGenerator.Instance.steepness = steepnessSlider.value;

SetSteepnessText();

}

/// <summary>

/// sets wavelength UI + value

/// </summary>

public void SetWavelength()

{

WaveGenerator.Instance.wavelength = wavelengthSlider.value;

SetWavelengthText();

}

/// <summary>

/// sets angle UI + value

/// </summary>

public void SetAngle()

{

WaveGenerator.Instance.angle = angleSlider.value;

SetAngleText();

}

/// <summary>

/// formats steepness text

/// </summary>

void SetSteepnessText()

{

steepnessText.text = String.Format(

"Steepness: {0}%",

(Math.Round(steepnessSlider.value / 0.4f, 2) *

100).ToString());

}

/// <summary>

/// formats wavelength text

/// </summary>

void SetWavelengthText()

{

wavelengthText.text = String.Format(

"Wavelength: {0}m",

Theo Stewart-Griffiths // 13H 56

Math.Round(wavelengthSlider.value, 2).ToString());

}

/// <summary>

/// formats angle text

/// </summary>

void SetAngleText()

{

angleText.text = String.Format(

"Angle: {0}°",

Math.Round(angleSlider.value, 0).ToString());

}

}

SpawnManager Class (C#)

Manages the creation and destruction of floating objects

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class SpawnManager : MonoBehaviour

{

//### singleton

public static SpawnManager Instance;

void Awake()

{

if (Instance != null && Instance != this)

Destroy(this);

else

Instance = this;

objectsInScene = Object.FindObjectsOfType<BuoyantObject>().Length;

UpdateCounterText();

}

//list of spawnable objects

public GameObject[] spawns = new GameObject[2];

[SerializeField] private int objectsInScene;

/// <summary>

/// spawns an object from the array

/// </summary>

/// <param name="n">the index of the item to spawn</param>

public void SpawnObject(int n)

{

if(objectsInScene < 20)

{

Theo Stewart-Griffiths // 13H 57

GameObject go = Instantiate(spawns[n], Vector3.up * 3,

Quaternion.identity);

objectsInScene++;

UpdateCounterText();

}

}

/// <summary>

/// deletes the current

/// </summary>

public void DeleteObject()

{

Transform t = CameraController.Instance.target;

CameraController.Instance.UnlinkCamera();

Destroy(t.gameObject);

UIManager.Instance.SetDeleteButton(false);

objectsInScene--;

UpdateCounterText();

}

public void UpdateCounterText()

{

UIManager.Instance.counterText.text = objectsInScene.ToString() + "/20

objects";

}

}

CameraController Class (C#)

Manages the input system to move the camera and select objects

public class CameraController : MonoBehaviour

{

//### singleton

public static CameraController Instance;

void Awake()

{

if (Instance != null && Instance != this)

Destroy(this);

else

Instance = this;

}

//### reference variables

Controls controls;

public Transform target;

//### parameters with default values

Vector3 defaultOffset = new Vector3(0, 2, -3);

float sensitivity = 0.25f;

Theo Stewart-Griffiths // 13H 58

//### states

public CameraState currentState;

bool MMB = false;

float distance = 3f;

Vector3 currentOffset;

Vector2 turnXY = new Vector2(0, 0);

Vector2 movDir = new Vector2(0, 0);

void OnEnable()

{

//setup controls and state of camera

currentState = CameraState.Free;

currentOffset = defaultOffset;

controls = new Controls();

controls.Enable();

controls.Camera.LMB.performed += OnLMB;

controls.Camera.MMB.performed += ctx => { MMB = true; };

controls.Camera.MMB.canceled += ctx => { MMB = false; };

//set scroll wheel behaviour

//scroll wheel changes distance to targeted object

controls.Camera.Scroll.performed += ctx =>

{

float target = Mathf.Clamp(distance + (ctx.ReadValue<float>()) /

-120f, 2, 12);

distance = Mathf.Lerp(distance, target, 0.5f);

};

controls.Camera.WASD.performed += ctx => { movDir =

ctx.ReadValue<Vector2>().normalized * 2f; };

controls.Camera.WASD.canceled += ctx => { movDir = Vector2.zero; };

//set F button behaviour

//releases camera from followed object

controls.Camera.F.performed += ctx => UnlinkCamera();

}

/// <summary>

/// method called on left mouse click

/// </summary>

public void OnLMB(InputAction.CallbackContext context)

{

Ray ray =

Camera.main.ScreenPointToRay(Mouse.current.position.ReadValue());

RaycastHit hit;

//if clicked object is a buoyant object set it as camera target

if(Physics.Raycast(ray, out hit, 100f))

{

Theo Stewart-Griffiths // 13H 59

if(hit.transform.gameObject.GetComponent<BuoyantObject>() != null)

{

target = hit.transform;

currentState = CameraState.Follow;

currentOffset = (3f * Vector3.back);

UIManager.Instance.SetDeleteButton(true);

}

}

}

/// <summary>

/// unlinks the camera from the current object

/// </summary>

public void UnlinkCamera()

{

if (currentState == CameraState.Follow)

{

Vector3 f = transform.forward;

currentState = CameraState.Free;

target = null;

transform.rotation = Quaternion.LookRotation(f, transform.up);

}

}

/// <summary>

/// occurs every frame

/// </summary>

void Update()

{

HandleMotion();

}

/// <summary>

/// calculates the new position and moves the camera

/// </summary>

void HandleMotion()

{

//if there is a current target

if (currentState == CameraState.Follow)

{

//if the middle mouse button is being held

if (MMB)

{

Vector2 mouse = Mouse.current.position.ReadValue();

Vector2 offset = new Vector2(Screen.width / 2, Screen.height / 2);

mouse = (mouse - offset) * Time.deltaTime * sensitivity;

//set the mouse rotation

turnXY.x += mouse.x;

turnXY.y += mouse.y;

Theo Stewart-Griffiths // 13H 60

turnXY.y = Mathf.Clamp(turnXY.y, 5f, 80f);

}

//set the offset vector

currentOffset = Quaternion.Euler(turnXY.y, turnXY.x, 0) * (distance *

Vector3.back);

transform.position = Vector3.Lerp(transform.position, target.position

+ currentOffset, 0.5f);

transform.LookAt(target);

}

else

{

//if there is no target and middle mouse button is held

if (MMB)

{

Vector2 mouse = Mouse.current.position.ReadValue();

Vector2 offset = new Vector2(Screen.width / 2, Screen.height / 2);

mouse = (mouse - offset) * Time.deltaTime * sensitivity;

//set the mouse rotation

turnXY.x += mouse.x;

turnXY.y -= mouse.y;

turnXY.y = Mathf.Clamp(turnXY.y, -30f, 70f);

}

Vector3 pos = (transform.forward * movDir.y + transform.right *

movDir.x) * 0.1f ;

pos += transform.position;

//set the camera rotation

Quaternion rot = Quaternion.Euler(turnXY.y, turnXY.x, 0);

transform.rotation = Quaternion.Lerp(transform.rotation, rot, 0.4f);

transform.position = Vector3.Lerp(transform.position, pos, 0.3f);

}

}

void OnDisable()

{

controls.Disable();

}

}

public enum CameraState

{

Free,

Follow

}

Theo Stewart-Griffiths // 13H 61

BuoyantObject Class (C#)

Manages the physics of any floating object

public class BuoyantObject : MonoBehaviour

{

//### reference variables

Rigidbody rb;

MeshFilter filter;

void OnEnable()

{

filter = GetComponent<MeshFilter>();

rb = GetComponent<Rigidbody>();

}

public void Update()

{

ApplyBuoyancy();

}

/// <summary>

/// calculates and applies buoyant force to each vertex

/// </summary>

void ApplyBuoyancy()

{

Vector3 gravity = WaveGenerator.Instance.strength *

Vector3.down / filter.mesh.vertices.Length;

//for every vertex in the mesh

foreach (Vector3 vertex in filter.mesh.vertices)

{

//convert local to global position

Vector3 vt = transform.TransformPoint(vertex);

/* GERSTNER WAVES */

Vector4 g = WaveGenerator.Instance.SampleGerstnerWave(vt.x, vt.z);

float d = vt.y - g.w;

//apply buoyant force if underwater

if(d < 0f)

{

rb.AddForceAtPosition(-d * (Vector3)g *

WaveGenerator.Instance.strength,

vt, ForceMode.Acceleration);

}

//apply gravity

rb.AddForceAtPosition(gravity, vt, ForceMode.Acceleration);

}

Theo Stewart-Griffiths // 13H 62

}

}

WaterShader Class (GLSL)

Manages the GPU side of the wave by rendering the vertices

Shader "Custom/WaterShader"

{

Properties

{

_Color ("Color", Color) = (1,1,1,1)

_MainTex ("Albedo (RGB)", 2D) = "white" {}

_Glossiness ("Smoothness", Range(0,1)) = 0.5

_Metallic ("Metallic", Range(0,1)) = 0.0

_Steepness ("Steepness", Range(0,1)) = 0.5

_Wavelength ("Wavelength", Range(1,20)) = 5

_Direction ("Direction (2D)", Vector) = (1, 0, 0, 0)

}

SubShader

{

Tags { "RenderType"="Transparent" "Queue"="Transparent" }

LOD 200

CGPROGRAM

#pragma surface surf Standard alpha vertex:vert

#pragma target 3.0

sampler2D _MainTex;

struct Input

{

float2 uv_MainTex;

};

half _Glossiness;

half _Metallic;

fixed4 _Color;

//water parameters

float _Steepness, _Wavelength;

float2 _Direction;

UNITY_INSTANCING_BUFFER_START(Props)

UNITY_INSTANCING_BUFFER_END(Props)

// procedure applied to each vertex

void vert (inout appdata_full vertexData)

{

float3 v = vertexData.vertex.xyz;

Theo Stewart-Griffiths // 13H 63

//wave number

float k = 2 * UNITY_PI / _Wavelength;

float c = sqrt(9.8 / k);

float2 d = normalize(_Direction);

float j = k * (dot(d, v.xz) - c * _Time.y);

float a = _Steepness / k;

v.x += d.x * (a * cos(j));

v.y = a * sin(j);

v.z += d.y * (a * cos(j));

//tangent = (dx, dy, dz)

float3 tangent = normalize(float3(1 - _Steepness * sin(j), _Steepness

* cos(j), 0));

//normal = (-dy, dx, 0)

float3 normal = float3(-tangent.y, tangent.x, 0);

vertexData.vertex.xyz = v;

vertexData.normal = normal;

}

void surf (Input IN, inout SurfaceOutputStandard o)

{

// Albedo comes from a texture tinted by color

fixed4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;

o.Albedo = c.rgb;

// Metallic and smoothness come from slider variables

o.Metallic = _Metallic;

o.Smoothness = _Glossiness;

o.Alpha = c.a;

}

ENDCG

}

}

Theo Stewart-Griffiths // 13H 64

UML DIAGRAM

BIBLIOGRAPHY
Sources used/referenced in the creation of my project:

● https://www.gamedeveloper.com/programming/water-interaction-model-for-boats
-in-video-games

● https://www.youtube.com/watch?v=lWCPFwxZpVg
● https://catlikecoding.com/unity/tutorials/flow/waves/
● https://en.wikipedia.org/wiki/Trochoidal_wave
● https://www.red3d.com/cwr/boids/

Theo Stewart-Griffiths // 13H 65

https://www.gamedeveloper.com/programming/water-interaction-model-for-boats-in-video-games
https://www.gamedeveloper.com/programming/water-interaction-model-for-boats-in-video-games
https://www.youtube.com/watch?v=lWCPFwxZpVg
https://catlikecoding.com/unity/tutorials/flow/waves/
https://en.wikipedia.org/wiki/Trochoidal_wave
https://www.red3d.com/cwr/boids/

